Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We provide a complete local well-posedness theory inHsbased Sobolev spaces for the free boundary incompressible Euler equations with zero surface tension on a connected fluid domain. Our well-posedness theory includes: (i) Local well-posedness in the Hadamard sense, i.e., local existence, uniqueness, and the first proof of continuous dependence on the data, all in low regularity Sobolev spaces; (ii) Enhanced uniqueness: Our uniqueness result holds at the level of the Lipschitz norm of the velocity and the$$C^{1,\frac{1}{2}}$$regularity of the free surface; (iii) Stability bounds: We construct a nonlinear functional which measures, in a suitable sense, the distance between two solutions (even when defined on different domains) and we show that this distance is propagated by the flow; (iv) Energy estimates: We prove refined, essentially scale invariant energy estimates for solutions, relying on a newly constructed family of elliptic estimates; (v) Continuation criterion: We give the first proof of a sharp continuation criterion in the physically relevant pointwise norms, at the level of scaling. In essence, we show that solutions can be continued as long as the velocity is in$$L_T^1W^{1,\infty}$$and the free surface is in$$L_T^1C^{1,\frac{1}{2}}$$, which is at the same level as the Beale-Kato-Majda criterion for the boundaryless case; (vi) A novel proof of the construction of regular solutions. Our entire approach is in the Eulerian framework and can be adapted to work in more general fluid domains.more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            For both the cubic Nonlinear Schrödinger Equation (NLS) as well as the modified Korteweg-de Vries (mKdV) equation in one space dimension we consider the set of N--soliton states, and their associated multisoliton solutions. We prove that (i) this set is a uniformly smooth manifold, and (ii) the$$\mathbf {M}_{N}$$ states are uniformly stable in H^s for each s>-1/2. One main tool in our analysis is an iterated Bäcklund transform, which allows us to nonlinearly add a multisoliton to an existing soliton free state (the soliton addition map) or alternatively to remove a multisoliton from a multisoliton state (the soliton removal map). The properties and the regularity of these maps are extensively studied.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            This article is concerned with one dimensional dispersive flows with cubic non- linearities on the real line. In a very recent work, the authors have introduced a broad conjecture for such flows, asserting that in the defocusing case, small initial data yields global, scattering solutions. Then this conjecture was proved in the case of a Schr¨odinger dispersion relation. In terms of scattering, our global solutions were proved to satisfy both global L6 Strichartz estimates and bilinear L2 bounds. Notably, no localization assumption is made on the initial data. In this article we consider the focusing scenario. There potentially one may have small solitons, so one cannot hope to have global scattering solutions in general. Instead, we look for long time solutions, and ask what is the time-scale on which the solutions exist and satisfy good dispersive estimates. Our main result, which also applies in the case of the Schr¨odinger dispersion relation, asserts that for initial data of size ϵ, the solutions exist on the time-scale ϵ^{-8}, and satisfy the desired L^6 Strichartz estimates and bilinear L^2 bounds on the time-scale ϵ^{−6}. To the best of our knowledge, this is the first result to reach such a threshold.more » « less
- 
            Abstract It has long been conjectured that for nonlinear wave equations that satisfy a nonlinear form of the null condition, the low regularity well-posedness theory can be significantly improved compared to the sharp results of Smith-Tataru for the generic case. The aim of this article is to prove the first result in this direction, namely for the time-like minimal surface equation in the Minkowski space-time. Further, our improvement is substantial, namely by 3/8 derivatives in two space dimensions and by 1/4 derivatives in higher dimensions.more » « less
- 
            Modified scattering phenomena are encountered in the study of global properties for nonlinear dispersive partial differential equations in situations where the decay of solutions at infinity is borderline and scattering fails just barely. An interesting example is that of problems with cubic nonlinearities in one space dimension. The method of testing by wave packets was introduced by the authors as a tool to efficiently capture the asymptotic equations associated to such flows, and thus establish the modified scattering mechanism in a simpler, more efficient fashion, and at lower regularity. In these expository notes we describe how this method can be applied to problems with general dispersion relations.more » « less
- 
            Abstract The skew mean curvature flow is an evolution equation forddimensional manifolds embedded in$${\mathbb {R}}^{d+2}$$ (or more generally, in a Riemannian manifold). It can be viewed as a Schrödinger analogue of the mean curvature flow, or alternatively as a quasilinear version of the Schrödinger Map equation. In an earlier paper, the authors introduced a harmonic/Coulomb gauge formulation of the problem, and used it to prove small data local well-posedness in dimensions$$d \geqq 4$$ . In this article, we prove small data local well-posedness in low-regularity Sobolev spaces for the skew mean curvature flow in dimension$$d\geqq 2$$ . This is achieved by introducing a new, heat gauge formulation of the equations, which turns out to be more robust in low dimensions.more » « less
- 
            Abstract The skew mean curvature flow is an evolution equation for a $$d$$ dimensional manifold immersed into $$\mathbb {R}^{d+2}$$, and which moves along the binormal direction with a speed proportional to its mean curvature. In this article, we prove small data global regularity in low-regularity Sobolev spaces for the skew mean curvature flow in dimensions $$d\geq 4$$. This extends the local well-posedness result in [7].more » « less
- 
            Proving local well-posedness for quasi-linear problems in partial differential equations presents a number of difficulties, some of which are universal and others of which are more problem specific. On one hand, a common standard for what well-posedness should mean has existed for a long time, going back to Hadamard. On the other hand, in terms of getting there, there are by now both many variations—and also many misconceptions. The aim of these expository notes is to collect a number of both classical and more recent ideas in this direction, and to assemble them into a cohesive roadmap that can be then adapted to the reader’s problem of choice.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
